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It has recently been demonstrated that half-
lives of xenobiotics estimated in rats can be
used to predict their half-lives in humans
using a linear model that is logarithmic in
both variables as follows:

log(t1/2h) = a + [blog(tll2r)] + e (1)

where tl/2h and tl/2r represent xenobiotic
half-lives for humans and rats, respectively,
for an array of different xenobiotics, and e is
an error term assumed to be normally dis-
tributed with a constant standard deviation,
a (1). This model was derived from a
regression analysis of over 100 xenobiotics
for which both rat and human half-life val-
ues had been reported, and could be simpli-
fied to an allometric expression:

tiI2h = a (tl/2r)b (2)

where a depends on both a and e.
The values for rat half-life used in the

former analysis ranged from about 0.02 hr to
1,776 hr. It was additionally reported that
the 80% confidence intervals for the predict-
ed human half-lives generally embraced
about a 10-fold range of predicted half-life
values and that the model accounted for
75% of the variance in the relationship
between tl/2h and tl/2r (1).

In this study, we explored the possibility
that accounting for the role ofxenobiotic lipid
solubility might provide an improvement in

the prediction of human half-life values esti-
mated directly from rat half-life data. The
lipid solubility of xenobiotics would be
expected to be an important parameter in
determining the half-life relationship
between rats and humans because the adi-
pose content of humans as a percentage of
total body weight is 3-4 times larger than for
rats (23% vs. 7%, respectively) (2). To
explore the effect of lipid solubility, we
examined the ability of the octanol:water
partition coefficient, expressed as log P, to
account for some of the variability remaining
in the data after use of the simple linear
expression in Equation 1. We also expanded
the number of substances with high log P
values (>6.5) to better evaluate how well this
model and others accommodate xenobiotics
with such high log P values and hence
exremely long half-lives.

Methods
Average half-life values in rats and humans
for 127 xenobiotics were obtained from
the literature. The references for 103 of
those variates have been published [see
Bachmann et al. (1)]. Log P values for 102
of these xenobiotics were ascertained from
one of four resources (3-6) and represent-
ed a mix of experimentally determined or
calculated values. The influence of the log
P of a xenobiotic on the accuracy of its
predicted human half-life from rat half-life
data was investigated as follows.

We successively explored six different
models, ranging from the simple to the com-
plex. The models are listed in Table 1. Model
1 can be recognized as a first order Taylor
series in one variable, log t1/2r. Model 2 is a
second order Taylor series in log t1/2r. Model
3 is a first order Taylor series in two variables,
log tl/2r and log P. Models 4-6 are second
order Taylor series' in two variables, log tl/2r
and log P.

Two of the models (Models 1 and 2) were
evaluated using both the full data set (n =
127) and the more limited data set (n = 102),
which included only those substances for
which log P values were available.

Models were evaluated using simple
regression analysis. The statistical parameters
of interest were the root mean square error
(RMSE) of the observed versus predicted
values; the adjusted R2 value, which is a
measure of the total variance explained by
the model; the estimate of each coefficient;
and the results of a two-tailed t-test ascer-
taining whether the coefficient value is sig-
nificantly different from zero. Differences
were considered significant at p-values
<0.05. Computations, including regression
analyses, were performed using SAS statisti-
cal software (SAS Institute, Cary, NC) run-
ning on an IBM 9672 mainframe computer
(IBM, Somers, NY).

Results
Results of the regression analyses and t-test
are given in Table 1. For the models that do
not take specific account of log P (Models 1
and 2), it should be noted that the quadratic
model is preferred (Model 2). This becomes
apparent when comparing the graphs of
Models 1 and 2 for the full data set (Fig. 1),
where it can be seen that Model 2 better
accomodates xenobiotics with extremely
high values of t1/2r1 which also tend to be
xenobiotics with extremely large (.6.5) val-
ues for log P. Model 3 is a first-order Taylor
series in both log tl/2r and log P, and it
yields less satisfactory results than Model 2
when applied to the same data set (i.e., the
102 xenobiotics for which log P values were
available). For comparative purposes, Model
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Table 1. Statistical results of six models used to predict human half-life from rat half-life data

Coefficient estimate
Model Equation Number RMSE IF (adjusted) Coefficient and (SE) p-Value
1 log t/nh = a + b(log t1/r) 127 0.4276 0.8312 a 0.7174 (0.0390) 0.0001

b 1.0718 (0.04301 0.0001

a
b

euumviuuunu;. niwvi.-, iuuti.iuum. *9uau umul, olr* i@LUIIUaIU wum .

"The p-value for these two coefficients together (i.e., collectively) is 0.1 128.

106
2 is graphed in juxtaposition to Model 1 in
Figure 1. Model 2 is graphed with predic-
tion intervals in Figure 2; in this figure the
full data set was used.

Models 4, 5 and 6 use t12r and log P in
various second order Taylor series models
to predict human half-life. These three
models are virtually equivalent in terms of
RMSE and adjusted R2, differing by little
more than 1% from one another in RMSE
and less for R2. This fact alone leads us to
select the least complex model among
these, Model 4. In addition, we note in
Model 6 (the full quadratic model) that the
interaction term is not statistically signifi-
cant, and when that term is dropped
(resulting in Model 5), the (log p)2 term
becomes nonsignificant as well. Finally,
when the statistical significance of these
two terms is jointly tested in Model 6, the
p-value for the F-test is found to be 0.1 13,
as noted in Table 1. Each of these observa-
tions lead us to prefer Model 4 out of all
models incorporating log P. In Figure 3 the
predicted human half-lives are plotted
against actual human half-lives. Predictions
are based on Models 1-4, and the juxtapo-
sitioning of the regression and identity lines
is shown. On the basis of the values of the
coefficients and exponents for the regres-
sion equations, the regression lines for
Models 2 and 4 more closely approximate
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Figure 1. Comparison of the measured human half-lives to human half-lives predicted from rat half-lives by
Model 1 and Model 2 for the full data set (n = 127). See Table 1 for model equations and model parameter
values. The identity and log P value are indicated for the nine compounds with the highest log P values
and/or longest half-lives. Abbreviations: MeHg, methylmercury; PnCB, 2,2',4,5,5'-pentachlorobiphenyl;
TBDD, 2,3,7,8-tetrabromodibenzo-p-dioxin; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; PnCDF, 2,3,4,7,8-
pentachlorodibenzo-p-dioxin; HxCB, 2,2',4,4',5,5'-hexachlorobiphenyl.
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the identity lines. Similar plots for Models
5 and 6 appear virtually identical to that of
Model 4 (not shown).

We also observe that the RMSE and R?
values for Model 4 appear close to those
found for Model 2. This indicates that
valid predictions can be obtained even if
log P is not available and the prediction is
based entirely on tl/2r. On the other hand,
when only the limited data set (of xenobi-
otics with log P values available) is used, we
find that as log P is considered, RMSE is
lower, X2 is higher, and log P is statistically
significant (p = 0.020). Thus when log P is
available, these results indicate that it is
sensible to employ it.

Discussion
Previously, it was reported that reasonably
good predictions of human half-lives were
possible based exclusively on rat half-life
data (1). The predictive equation along
with upper and lower confidence limits
(80%, 90%, and 95%) were derived from a
regression analysis based upon human and
rat half-life values for 103 xenobiotics and
therefore differed from other allometrically
based predictions of toxicokinetic parame-
ters in humans for a given xenobiotic,
which depend upon the extrapolation
across multiple species of the estimates of a
toxicokinetic parameter for a single xenobi-
otic. The authors accounted for at least 12
different reasons for a wide range between
the upper and lower prediction limits sur-
rounding the regression line (i.e., scatter of
data) (1). None of those reasons addressed
the physical-chemical characteristics of
xenobiotics. We were interested to see
whether accounting for a xenobiotic's lipid
solubility might diminish the variance in
the data, particularly since fat comprises a
significandy larger fraction of human body
weight compared to rats. This suggests that
the simple allometric expression relating rat
and human half-lives (see Equation 2)
might underpredict human half-lives of
highly lipophilic substances.
We incorporated a representation of

xenobiotic lipophilicity, the octanol:water
partition coefficient expressed as log P, into
our regression analysis and also expanded
the data set to include several xenobiotics
with extremely large log P values. The half-
life of a xenobiotic in rats or humans is a
function of the volume of distribution
(VD) and the total clearance rate (CL) as
given by the equation:

t1/2 =0.693 VD ICL (3)

V. is expected to increase with increasing
log P as more of the compound is distrib-
uted into adipose tissues and other lipid
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Figure 2. Actual human half-lives and human half-life prediction intervals plotted as a function of rat half-
lives for the fit of Model 2 to the full data set (n = 127). Curves represent the predicted values, the 95% pre-
diction limits, the 90% prediction limits, and the 80% prediction limits.

environments of the body. CL is expected
to be inversely related to log P for com-
pounds principally eliminated by renal or
biliary excretion. The CL of substances,
dependent solely on biotransformation for
elimination, may be less strongly depen-
dent on log P. In any case, the tl/2 for a
given species can be expected to be corre-
lated with log P such that tl/2 will generally
increase as log P increases. This prediction
is evidenced in Figure 4, which illustrates
that both rat and human half-life values
show a general trend to increase with
increasing log P for the large number of
xenobiotics considered in our analysis. On
the other hand, this figure demonstrates
that log P by itself is a relatively poor pre-
dictor of t1/2 for both rats and humans.

Consideration must then be given to how
log P affects the relationship between human
half-lives and rat half-lives for an array of
xenobiotics. From Equation 3, the general
relationship between human half-lives and rat
half-lives can be written as a function of VD
and CL for each species as follows:

tl/2h = tll2r (VD h/VDr)(CrlCLh) (4)

For a given xenobiotic, the CL ratio can be
expected to be at least partly correlated with
relative body size (7,8, but not systematically
affected by log P. Because of a higher adipose
fraction in humans (23% for humans vs. 7%

for rats), however, the human VD can be
expected to increase more with increasing log
P than does the rat VD. The VD ratio, and
hence the ratio of human to rat half-life,
should then be generally larger for xenobi-
otics with high log P values than low log P
values. This is indicated in Figure 4, where
the disparity between rat and human half-
lives is seen to increase for substances with
large log P values. Explicitly accounting for
log P can, in fact, improve the accuracy of
human half-life predictions from rat half-life
data as noted by the improved predictions of
both Models 3 and 4 versus Models 1 and 2,
respectively, when the same data set (i.e., n =

102) is used. Because rat half-life is at least
partially a function of log P (see Fig. 4), there
may be sufficient information within an array
of rat half-lives to predict human half-lives
across the full range of log P values. This
explains why the use of the quadratic equa-
tion (Model 2) yielded RMSE values and
coefficients of determination roughly compa-
rable to those of Model 4, suggesting that the
quadratic equation can be effectively applied
to the prediction of xenobiotic half-lives in
humans from rat half-life data, even for xeno-
biotics that possess extremely long half-lives
and/or extremely large log P values such as
dioxins and polychlorinated biphenyls.
Moreover, Model 2 does not even require
knowledge of log P values; it only requires a
measure of xenobiotic half-life in the rat. It
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Figure 3. Predicted human half-lives versus measured human half-lives. Predictions based on four models are shown as follows: (A) Model 1 ly= 1.4074 (XO8187)];
(B) Model 2 [y= 1.2449 (X-87787)]; (C) Model 3 [y= 1.4118 (XO8539)J; and (D) Model 4 [y= 1.3236 (X-8784)]. Equations for each regression were computed in all cases
only on the subset of data for which log P values were known (n = 102); however, additional data points (for which log P values were not known) are also exhibit-
ed in Model 1 and Model 2. The dashed line is the zero residual or identity line, which represents a perfect fit.

must be noted that Model 1 appears to break
down for xenobiotics with extremely large
log P (or half-life) values, and for such sub-
stances, the magnitude of human half-lives
can be greatly underpredicted by Model 1. It
might also be noted that methyl mercury,
with a low log P but a long half-life due to

unusual binding properties, is well accomo-

dated by this same model.

As a practical matter, we found that
accounting for lipid solubility does improve
the accuracy of predictions of human xeno-

biotic half-lives from rat half-life data and
decreases variance when log P values are

included in the prediction equation. (com-
pared to Model 4 versus Model 2 for equal
sample size). This is especially important
when predicting human half-lives from rat

half-lives for xenobiotics with extremely large
log P values (>6.5), where Model 1 (from
which the simple allometric expression in
Equation 2 is derived) can become inaccurate
(see Fig. 1 and Fig. 3A). Thus, Model 4
should be used whenever log P and rat half-
life data are both readily available. In many

cases, however, log P values may not be
known a priori for the molecule of interest.
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And for environmental chemicals such as
dioxins, polyhalogenated biphenyls, and
polyhalogenated dibenzofurans, it is reason-
able to assume that log P values may be
extremely large. When log P values are not

known, we recommend the application of
the quadratic equation shown in Model 2 for
predicting human half-lives from rat half-
lives because this model appears to provide
accurate predictions over the full range of
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Figure 4. Human half-lives (log t112 = 0.452 + 0.288 log P; r= 0.647) and rat half-lives (log tl/2 = 0.161 + 0.209log P; r= 0.568) as a function of log P.
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xenobiotic half-lives likely to be encountered
and does so without the need for an explicit
value of a xenobiotic's aqueous/lipid parti-
tioning.
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